
Poster: Toward A Code Pattern Based Vulnerability
Measurement Model

John Heaps, Rocky Slavin, Xiaoyin Wang
The University of Texas at San Antonio

{john.heaps,rocky.slavin,xiaoyin.wang}@utsa.edu

ABSTRACT
Many access control patterns, both positive and negative, have been
identified in the past. However, there is little research describing
how to leverage those patterns for the detection of access control
bugs in code. Many software bug detection models and frameworks
for access control exist, however most of these approaches and tools
are process-based and suffer from many limitations. We propose
a framework to detect access control bugs based on code pattern
detection. Our framework will mine and generate bug patterns,
detect those patterns in code, and calculate a vulnerability measure
of software. Based on our knowledge we are the first pattern-based
model for the detection and measurement of bugs in software. As a
proof of concept, we perform a case study of the relational database
access control pattern “Improper Authorization”.
ACM Reference Format:
John Heaps, Rocky Slavin, Xiaoyin Wang. 2018. Poster: Toward A Code
Pattern Based Vulnerability Measurement Model. In SACMAT ’18: The 23rd
ACM Symposium on Access Control Models & Technologies (SACMAT), June
13–15, 2018, Indianapolis, IN, USA. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3205977.3208948

1 INTRODUCTION
The security and vulnerabilities of software systems are essential in
making decisions for real-world problems. Many process-based ap-
proaches and models have been developed to mitigate and quantify
software vulnerabilities. However, these approaches, while useful,
have many limitations. First, the existing models require data from
software processes to estimate model parameters, but fine-grained
monitoring of software processes is not always possible. Second,
these models cannot always handle new or upgraded software com-
ponents. Third, these models often cannot differentiate between
different types of defects. To address these issues, the proposed
project will develop a pattern-based vulnerability measurement
model, which checks software artifacts for the existence of negative
patterns to estimate the risk of software failures and data security,
their impact, and determine overall software vulnerability.

The model will quantitatively estimate the vulnerability of soft-
ware based on negative pattern instances in software artifacts, as
well as the importance and the activation probability of the patterns.
Recent studies show that software reuse and code clones are preva-
lent throughout software systems. In addition, software projects

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SACMAT ’18, June 13–15, 2018, Indianapolis, IN, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5666-4/18/06.
https://doi.org/10.1145/3205977.3208948

are continually becoming more based on existing software frame-
works, which have a limited number of usage patterns. Therefore,
it is reasonable to assume that most of the design fragments and
code portions of a new software product follow existing patterns.
Furthermore, the vulnerability of a software application can be
predicted by combining effects of all instances of negative bug pat-
terns. The project will yield a learning engine to mine online bug
repositories and project hosting websites; a pattern checker to de-
tect the existence and invocation of patterns; and a vulnerability
model for the estimation of the vulnerability of a software project
based on the detected patterns and their invocation probabilities.

The project will achieve the following major objectives: 1) Esti-
mate the vulnerability of a software project based on code patterns;
2) Support separate estimation of different aspects of software vul-
nerability, enabling fine-grained prediction of the effect of software
failures; 3) Confirm the existence of negative patterns (i.e., identify
the location of access control bugs) using test-coverage-based ap-
proach; 4) Evaluate the feasability of the model’s ability to perform
software vulnerability estimation on real-world software projects.

2 FRAMEWORK
In this section we will discuss our framework for the identification
of bug patterns, detection of bugs in code, and proposed measure-
ment model, as shown in Figure 1.

2.1 Learning Engine
The learning engine acts as a repository of known patterns. These
patterns will be used to identify bugs in code during pattern de-
tection. To create this initial repository, we first surveyed popular
online bug repositories, such as Github, Bugzilla, Common Weak-
ness Enumeration (CWE)1, Jira, etc. We decided to initially support
CWE and Github, as they often have code examples and code fixes
linked with their bug reports. Further, they both offer very large,
robust data sets of access control patterns and bugs.

CWE is a database that catalogs and categorizes known bugs.
Our method crawls bug reports from CWE and categorizes them
according to the common keywords in their descriptions and CWE
classification categories. We are thus able to extract bug descrip-
tions, code examples, and code solutions.

The goal of bug collection for Github is to identify the most com-
mon bugs on Github. We obtain thousands of issues from Github
projects by making requests to Github’s REST API v3. For each
of these issues we are able to extract bug descriptions, solutions,
and sometimes sections of code from before and after an issue was
resolved. In our initial implementation we searched the top 1,000
Java-based repositories, and used the most recent 100 closed issues
with the label “bug” from each.
1CWE website URL: https://cwe.mitre.org/

Session: Demostrations & Posters SACMAT’18, June 13-15, 2018, Indianapolis, IN, USA

209

https://doi.org/10.1145/3205977.3208948
https://doi.org/10.1145/3205977.3208948


Figure 1: Bug Pattern Framework
After we collected the data from CWE and Github, we applied

the clone detection tool CCFinder [2] to detect clones from the
set of code commits and identify common buggy code and their
fixes. Then, for the most popular common code bugs we manually
extracted concrete code patterns from them, which were stored to
be used in pattern detection and code analysis.

2.2 Pattern Detection
There is limited literature available on bug pattern detection. Work
by Joseph Near and Daniel Jackson [5] describes the tool “SPACE”
which is able to detect violations of access control vulnerability
patterns. However, this tool requires that a user completely define
and map software components and design to the role-based access
control model. Not all software systems specifically use role-based
access control, though. It can be difficult, or not possible, for sys-
tems that use other access control designs to define that system
in the role-based model. Further, this approach is based on seven
access control patterns, not code-level bug patterns on access con-
trol. Other work by Guangtai Liang et al. [3] introduces the tool
“PatBugs” which detects temporal bugs in cross-platform mobile
applications, focusing on API usage. The scope of this tool is too
narrow for our purposes, it’s focus being solely on temporal bug
patterns in mobile applications.

To conduct the pattern detection in our framework, we utilized
SpotBugs2, a fork of the static analysis tool FindBugs [1]. The tool
analyzes Java bytecode and detects the existence of bug patterns.

To study the effectiveness of SpotBugs on detecting bug code
patterns, we downloaded the top 1,000 Java GitHub repositories
that are under 50MB for a total of 826 repositories. From these
repositories, we were able to compile 763 repositories using a pro-
gram for automatic compilation of various types of Java projects.
For each compiled repository, we ran SpotBugs to generate a list of
bug types, which detected 217 bug pattern instances.

After identifying bug patterns, they further needed to be linked
to abstract quality aspects to calculate a vulnerability, or risk, mea-
sure. Specifically, we consider four major aspects of vulnerability
including: (1) Control Integrity which measures how likely the
software may incorrectly interact with its users; (2)Data Integrity
which measures how likely the software may provide incorrect
output; (3) Data Confidentiality which measures how likely the

2SpotBugs URL: https://spotbugs.github.io/

software may release data to entities not authorized to receive it;
and (4)Data Availabilitywhich measures how likely the software
may not be able to provide data that should be in storage. Through
linking bug code patterns with high-level quality aspects, we are
able to estimate the vulnerability, or risk, on different aspects based
on detected patterns related to them.

Finally, the detection of a bug pattern is not enough to deter-
mine that a bug actually exists, only that a bug possibly exists. We
integrate testing techniques to test if the section of code identified
by the pattern actually produces an error, showing it truly is a bug.

2.3 Measurement Model
The model used to calculate a vulnerability score must consider as
many different types of bugs (related to access control) as possible,
and must cover the abstract quality aspects mentioned previously.
We began by considering existing measurement models (e.g., Com-
mon Vulnerability Scoring System (CVSS) [4], Common Weakness
Scoring System (CWSS) 3, etc.), however these models only calcu-
late a scoring for a single bug and not for an entire system. Further,
the amount of possible automation in these models is also very
limited and requires manual parameter assignments. Therefore, we
created our own measurement model.

The basic idea of our measurement model is to estimate the vul-
nerability of a software based on the detected instances of code
patterns in its code base. For a bug pattern instance, we determine
the impact it will have on the software in relation to the identi-
fied abstract quality aspects. Further, we determine how likely the
instance will be triggered at runtime, which was found from the
testing performed previously. The more instances of bug patterns
detected and the more likely those instances will be triggered, the
higher (or worse) the vulnerability score should be.

At the most abstract level, for multiple detected instances of bug
patterns, we use the following formula to generate a vulnerability
value, normalized to the range [0, 1]. Here Detected is the set of bug
instances detected in the code using patterns and Risk(b) denotes
the risk value of a given bug b.

Vulnerability = 1 −
R

R +
∑
Detected Risk (b)

(1)

R is a constant, which is the average risk sumper software project,
which can be estimated using a large number of training software
projects. With this formula if there are no bugs in a software project,
3CWSS URL: https://cwe.mitre.org/cwss/cwss_v1.0.1.html

Session: Demostrations & Posters SACMAT’18, June 13-15, 2018, Indianapolis, IN, USA

210



the vulnerability score will be 0. If the risk sum of all bugs in a
project is R, the vulnerability score will be 0.5. So vulnerability
scores above 0.5 indicate above average vulnerability, and lower
than 0.5 indicate below average vulnerability. When the risk sum
goes very high, the vulnerability value will be close to 1.

The current, top-level formula for the risk of a bug is:
Risk = Impact ∗ Susceptibility (2)

Impact represents how the behavior and data of the software are
affected by the bugs present in it. Susceptibility defines how easy
or often those bugs are executed.

We divide Impact into four different sub-aspects: Control In-
tegrity, Data Integrity, Data Confidentiality, and Data Availability,
which cover our abstract aspects. They are modeled by the equation:

Impact = A ∗ InteдrityControl + B ∗ InteдrityData

+C ∗Conf identialityData + D ∗AvailabilityData (3)

A, B, C, and D, model the relative importance (or weight) of
InteдrityControl , InteдrityData , Conf identialityData , and
AvailabilityData , respectfully. The weights of different aspects
may be changed according to the actual usage scenarios. It should
be noted that, although the formula currently models only negative
patterns, positive patterns and mitigations can also be considered
in the same way by changing the Impact value in a negative way.

Susceptibility indicates how likely the bug may be triggered
during runtime. That is, when a software is executed, a bug that is
triggered very often is more of a risk than a bug that is triggered
rarely. Susceptibility can be estimated using the results from the
integrated testing mentioned in Section 2.2. The more tests that
trigger the bug, the higher the Susceptibility should be.

3 IMPROPER AUTHORIZATION EXAMPLE
In this section we briefly discuss how an access control pattern
would move through the framework. We will use the “Improper
Authorization” bug example, shown in Figure 2, to help explain the
flow of our framework.

Figure 2: Improper Authorization Bug Code Example
We begin by mining the bug from CWE. Improper Authorization

is ID 285 in CWE4 and occurs when software does not perform,
or incorrectly performs, an authorization check when an actor at-
tempts to access a resource or perform an action. After being stored
in our learning engine repository, a concrete pattern is developed.
For most bugs, multiple code patterns are needed to cover and iden-
tify as many variations of the bug as possible. These concrete code
patterns are then fed into SpotBugs.

SpotBugs will then execute over a system andwhen it encounters
a piece of code that matches one of the Improper Authorization
patterns, it will mark its location in the code. Based on the location
4https://cwe.mitre.org/data/definitions/285.html

we are able to do testing, specifically targeting that piece of code
to find if any input would lead to errors, especially errors that
correlate with our abstract aspects from Section 2.2. The output of
the testing is then used as input to the model.

The model receives all identified and tested bugs. The Impact is
determined by the possible errors each bug can produce. For ex-
ample, the Improper Authorization can effect Data Confidentiality
and Data Availability. Based on testing, Susceptibility of each bug
is determined. The overall Risk for each bug is then calculated, and
finally the Vulnerability score for the system is produced.

4 CONCLUSION AND FUTUREWORK
Wehave developed an initial vulnerability model and corresponding
tool set to support automatic measurements of software vulnerabil-
ity of access control violations. While initial studies are promising,
the project can be further enhanced and extended.

Our current learning engine is based on bug reports collected
from Github and CWE. We plan to enlarge our dataset to mine
bugs from a more broad variety of bug datasets. Further, we are
currently producing bug patterns manually, which is a tedious
and slow process. We will investigate possible machine learning
applications to help automatically generate bug patterns.

We are currently using Spotbugs to detect code patterns. One
limitation of this tool is that it is Java specific, and requires built
software projects to work with. To overcome this limitation, we
plan to consider PMD, which takes source code as input and works
with many different programming languages (which will also allow
us to extend our learning engine to include other programming
languages). One issue with PMD is that it may not support some bug
code patterns that are currently supported in Spotbugs. Therefore,
we plan to adapt such code patterns to PMD.

Our current integration with test coverage is rather preliminary.
Currently, we need manual generation and execution of test cases
for each software feature. In the next phase, we will automate test
execution and the insertion of test coverage build plug-ins.

Finally, we plan to detect positive code patterns to estimate the
mitigation of risks in the software project. Specifically, we will first
reverse engineer code to class diagrams, and then extract design
patterns from those class diagrams.

ACKNOWLEDGEMENTS
We would like to thank Dr. Jianwei Niu, Rodney Rodriguez, MSI
STEMResearch &Development Consortium (Award #D01_W911SR-
14-2-0001-0012), and National Science Foundation (Award #1736209)
for their contributions to this project.

REFERENCES
[1] Nathaniel Ayewah, David Hovemeyer, J David Morgenthaler, John Penix, and

William Pugh. 2008. Using static analysis to find bugs. IEEE software 25, 5 (2008).
[2] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: a mul-

tilinguistic token-based code clone detection system for large scale source code.
IEEE Transactions on Software Engineering 28, 7 (2002), 654–670.

[3] Guangtai Liang, Jian Wang, Shaochun Li, and Rong Chang. 2014. PatBugs: A
Pattern-Based Bug Detector for Cross-platform Mobile Applications. In Mobile
Services (MS), 2014 IEEE International Conference on. IEEE, 84–91.

[4] Peter Mell, Karen Scarfone, and Sasha Romanosky. 2006. Common vulnerability
scoring system. IEEE Security & Privacy 4, 6 (2006).

[5] Joseph P Near and Daniel Jackson. 2016. Finding security bugs in web applications
using a catalog of access control patterns. In Software Engineering (ICSE), 2016
IEEE/ACM 38th International Conference on. IEEE, 947–958.

Session: Demostrations & Posters SACMAT’18, June 13-15, 2018, Indianapolis, IN, USA

211


	Abstract
	1 Introduction
	2 Framework
	2.1 Learning Engine
	2.2 Pattern Detection
	2.3 Measurement Model

	3 Improper Authorization Example
	4 Conclusion and Future Work
	References



